
Technical Manual of the Universal Server

Organisation: Copyright (C) 2019-2024 Olivier Boudeville

Contact: about (dash) universal-server (at) esperide (dot) com

Creation date: Saturday, May 2, 2020

Lastly updated: Sunday, January 14, 2024

Version: 0.0.18

Status: In progress

Dedication: Users and maintainers of the Universal Server.

Abstract: The Universal Server, part of the umbrella project of
the same name, is a multi-service daemon in charge of the au-
tomation (monitoring, scheduling and performing) of various
computer-based tasks, such as the proper management of the
server itself or, in the future, of home automation.
We present here a short overview of these services, to introduce
them to newcomers.

1

http://us-main.esperide.org/
https://github.com/Olivier-Boudeville/Universal-Server
https://github.com/Olivier-Boudeville/Universal-Server

Table of Contents
Overview 3

Layer Stack 3

Facilities Provided by this US-Main Layer 4
Home Automation . 4

Presence Simulator . 4
Alarm System . 5

Monitoring of Host Sensors . 5
Preparing the Setup . 6
Mode of Operation of the Sensor Manager 6

Contact Directory . 8
Contact File Format . 9
Contact File Location . 9

Communication Gateway . 9
Network Support Monitoring . 9
Remote Monitoring of Online Services 10
Next Services . 10

Configuring US-Main 10

Installing US-Main: Current Stable Version & Download 11
Automated Installation & Deployment 11
Using Cutting-Edge GIT . 11
Rebar3-based Build . 12
Using OTP-Related Build/Runtime Conventions 12

Launching US-Main 13

Monitoring US-Main 14

Support 14

Licence 14

Credits 14

Please React! 14

Ending Word 14

2

Overview
We present here a short overview of the general automated services offered
by our so-called "Universal Server", to introduce them to newcomers. These
services are implemented by US-Main, which relies notably on US-Common.

The next level of information is to read the corresponding source files, which
are intensely commented and generally straightforward.

The project repository is located here.

Layer Stack
From the highest level to the lowest, as summarised here, a software stack
involving the Universal Server usually is like:

• the Universal Server services themselves (i.e. this US-Main layer)

• [optional] the Universal Webserver, i.e. US-Web (for web interaction)

• US-Common (for US base facilities)

• [optional] Ceylan-Mobile (for 3G connectivity, notably SMS sending, re-
lying on the Gammu library)

• [optional] Ceylan-Seaplus (prerequisite of Ceylan-Mobile, for a bridge from
Erlang to the C language)

• jsx (to parse JSON sensor outputs)

• Ceylan-Oceanic (for the support of home automation, through the integra-
tion of Enocean devices and actuators; relies on our fork of erlang-serial)

• Ceylan-Traces (for advanced runtime traces)

• Ceylan-WOOPER (for OOP)

• Ceylan-Myriad (as an Erlang toolbox)

• Erlang (for the compiler and runtime)

• GNU/Linux

The shorthand for Universal Server is us.

3

https://github.com/Olivier-Boudeville/us-main
https://github.com/Olivier-Boudeville/us-common
https://github.com/Olivier-Boudeville/us-main/tree/master/src
https://github.com/Olivier-Boudeville/us-main
https://github.com/Olivier-Boudeville/us-main
http://us.esperide.org/
http://us-web.esperide.org/
http://us-common.esperide.org/
http://mobile.esperide.org
http://seaplus.esperide.org
https://github.com/talentdeficit/jsx
http://oceanic.esperide.org
https://github.com/Olivier-Boudeville/erlang-serial
http://traces.esperide.org
http://wooper.esperide.org
http://myriad.esperide.org
http://erlang.org
https://en.wikipedia.org/wiki/Linux

Facilities Provided by this US-Main Layer
These are mainly administration services.

Home Automation
The US-Main server offers house automation services based on the Enocean
protocol and associated devices (sensors and actuators).

These services are implemented thanks to our Ceylan-Oceanic library; please
refer to it for a better understanding of EURIDs, base identifiers, telegrams and
so on.

A key point is to define the Oceanic settings, so that the various devices
involved can be monitored and correctly interpreted.

Presence Simulator

The goal is to give to any outside observer the illusion that a building is currently
inhabited, for example by switching light(s) on and off as if actual people were
busy in such a premise.

For that, US-Main will control an (Enocean) smart plug (itself able typically
to toggle a well-chosen, low-consumption lamp visible from outside), based on
intra-day logical presence slots. Such a slot is defined by two milestones, a start
and a stop one (respectively to switch the smart plug on and off), which may
be either a (fixed) intra-day time() (hence {Hour,Minute,Second}), or the
dawn and dusk symbolic deadlines (atoms), which are then recomputed each
day (based on the current date, and on the longitude and the latitude specified
by the user for the location of the premise of interest).

The general principle, if the so-called "smart-lighting" feature is enabled, is
to switch on a lamp during the busy hours of the day iff no natural light can
be expected. All possible cases are expected to be covered (even, for extreme
latitudes, days without dawn and/or dusk).

If smart lighting is not enabled, then during a slot of simulated presence,
the actuator will be triggered unconditionally (that is whether daylight shall be
expected or not).

By default, the following single intra-day logical presence slots, controlling a
single set of actuators, are defined, for a simulated presence with smart lighting:

• from TMorningStart = 7:30 AM to TMorningStop = 8:30 AM, unless any
dawn is to happen concurrently

• from TEveningStart = 6:30 PM to TEveningStop = 11:45 PM, unless
any dusk is to happen concurrently

More generally, the user is free, through the presence_simulation_settings,
either to select a default policy or to specify their own presence program (con-
stant presence or absence, or a list of presence slots), with or without smart
lighting.

For example, in one’s US-Main configuration file of interest, possibly named
foobar-us-main-for-production.config, as referenced in the us_main_config_filename
key of us.config (both files being typically in /etc/xdg/universal-server)
one may go for the default program:

4

https://en.wikipedia.org/wiki/EnOcean
https://en.wikipedia.org/wiki/EnOcean
http://oceanic.esperide.org
https://oceanic.esperide.org/#oceanic-settings

% The EURID of any device (typically a push button or a double rocker)
% that serves to indicate whether someone is at home:
%
{ presence_switching_actuator, "004584A6" }.

% The settings in terms of presence simulation:
{ presence_simulation_settings, { default, undefined } }.

If a user-specific program is preferred, here with a single slot, with default
source and target EURIDs, and with smart lighting:

{ presence_simulation_settings, [
{ presence_simulation_setting, undefined, undefined,

[{ { 6, 30, 0 }, { 8, 0, 0 } }, { { 19, 30, 00 }, { 23, 30, 00 } }], true }] }.

Note that US-Main manages gracefully DST (Daylight saving time).

Alarm System

The principle is to monitor a set of (Enocean) sensors (typically opening detec-
tors for doors, windows, etc.), and to report whenever a problem is detected.

The US-Main must be first told when the alarm system shall be active; this
is typically when no one is at home, which can be notified to US-Main either by
executing a script (e.g. leaving-home.sh, in charge also for example of locking
all running computers) or by pushing an (Enocean) foot switch located at the
front door. Then, after a configurable delay, the alarm system will be enabled.

All sensors are then monitored, any opening being reported.
Other events will be reported, whether or not the alarm system is active:

• when an undeclared sensor is first seen

• if a known sensor vanishes (e.g. it has been destroyed, or it ran out of
power)

• if a jamming attempt is detected

When any abnormal event occurs, US-Main logs it and may typically sends
to the user notifications, by SMS and/or by e-mail.

Monitoring of Host Sensors
The objective here is to track the various (and numerous) sensors of interest
that most modern computers include; should abnormal feedback be detected, it
is to be automatically reported thanks to the communication gateway service.

The US Sensor Manager tracks automatically many hardware sensors; at
start-up it detects the main available ones, regarding:

• temperatures at various locations: the CPU socket, the CPU package
and cores themselves, any APU, the motherboard, the chipset, ACPI,
some disks (e.g. NVME); in the future, adding GPU and RAM modules
is considered

5

https://github.com/Olivier-Boudeville/us-main/blob/master/src/class_USSensorManager.erl

• the speed of the fans known of the motherboard (as opposed to any
case fan that would be directly connected to the power supply and that
would remain invisible)

• chassis intrusion, should such sensors be available

(other sensors like batteries, network or USB interfaces, etc. are at least
currently ignored, as their measurements are mostly voltage levels)

From then, the sensor manager periodically monitors the various measure-
ment points exhibited by such sensors: it does its best to filter bogus values, to
detect abnormal changes and to report to the user any related issue.

Preparing the Setup

The monitoring done by this server relies on the sensors executable (typically
/usr/bin/sensors, obtained generally from a package of the same name and
relying on lm-sensors). One may install the i2c-tools package as well for
DIMM information (see R2 below).

The sensors-detect script must have been run once by root beforehand
(select then only the default, safer options, by hitting Enter repeatedly or simply
use its --auto option), in order to configure sensors.

Sensor configuration is typically stored in /etc/sensors3.conf, and must
exist prior to running the US-Main server.

Mode of Operation of the Sensor Manager

Once the sensor manager is started, temperatures are periodically tracked
(i.e. the currently reported one, plus minimum, maximum, and average since
start) and compared to thresholds (any critical temperature as reported by the
chips, and also ones set by our sensor manager itself in order to trigger alarms).

Abnormal temperatures (that is, going above - or even below - relevant
thresholds) are then automatically timestamped and reported to the user by
the US logic (i.e. notified in traces with appropriate severity, and possibly
sent to the user thanks to emails and/or SMS, see the communication gateway
service).

Similarly, any fan that would stop whereas not being PWM1 is reported,
and the same applies should an intrusion happen.

Many sensors report bogus values; the US Sensor Manager does its best to
filter them out appropriately. This includes temperatures outside of any realistic
ranges and an intrusion being reported right from US-Main startup (whereas,
supposedly, it had not happened already).

Temperature monitoring Temperatures are monitored based on all the sen-
sors that are supported by lm-sensors (notably the motherboard and CPU
ones). Many sensors report, even when they are correctly tuned, bogus values,
and are more like very poor random generators (see how to mute them).

1PWM stands for Pulse-width modulation; the speed of these fans can be controlled by
their power source (typically the motherboard).

6

https://github.com/lm-sensors/lm-sensors
https://en.wikipedia.org/wiki/Pulse-width_modulation

The sensor manager considers that, when it starts, most temperatures are
under control. So it will consider that any too low or too high temperature re-
ported is bogus (refer to the {low,high}_bogus_temperature_threshold de-
fines).

In the future, extra information sources could be used:

• Hard Disk Drives, thanks to hddtemp, libatasmart, udisks2 or smartmon-
tools

• DIMM Temperature sensors (see R2)

• GPU, thanks to XNVCtrl for NVidia ones, or ADL SDK for ATI ones

Refer to R5 for further details.
Note that Platform Controller Hub (e.g. pch_cannonlake-virtual-*, pch_skylake-virtual-*,

etc.) are Intel’s single-chip chipsets; they tend to run hotter than CPUs.
They may be reported as autonomous first-level entries, or as measurement

points of the motherboard.

Fan Control The rotation speed of the fans can be measured thanks to
lm-sensors as well.

Note that not all fans are known of the motherboard, notably the ones that
are directly controlled by the user through a button (e.g. stop/low/high) will
remain invisible to all programs.

Currently the sensor manager is not able to discriminate between fixed-speed
fans and PWM ones.

The pulses attribute (e.g. fan2_pulses) tells how many of such pulses are
generated per revolution of the fan.

Chassis Intrusion In this last case, prior to launching the US server, one
may try to reset them; for example, as root:

$ ls -l /sys/class/hwmon/hwmon*/intrusion*
-rw-r--r-- 1 root root 4096 Jul 11 19:30 /sys/class/hwmon/hwmon3/intrusion0_alarm
-rw-r--r-- 1 root root 4096 Jul 8 21:46 /sys/class/hwmon/hwmon3/intrusion0_beep
-rw-r--r-- 1 root root 4096 Jul 11 19:30 /sys/class/hwmon/hwmon3/intrusion1_alarm
-rw-r--r-- 1 root root 4096 Jul 8 21:46 /sys/class/hwmon/hwmon3/intrusion1_beep
$ echo 0 >| /sys/class/hwmon/hwmon3/intrusion1_alarm
$ cat /sys/class/hwmon/hwmon3/intrusion1_alarm
1

As shown, this may not succeed.

Muting Faulty Sensors Some sensors are hopelessly flawed and are bound
to raise false alarms at any time.

Once they triggered a sufficient number of them, the safest route is to mute
them, which can be done thanks to the us_sensor_monitoring entry of the
US-Main configuration file.

Let’s suppose that a sensor whose identifier is {_SensorType=nct6792,
_SensorInterface=isa, _SensorNumber="0a20"} shall have its measurement

7

https://en.wikipedia.org/wiki/Platform_Controller_Hub

point AUXTIN1 be muted, and that one wants to disable another one, {acpitz,
acpi, "0"}, as a whole (i.e. all its measurement points).

It can be done with the following configuration entry:

{sensor_monitoring, [

% Under that key shall be specified a list of
% {sensor_id(), ’all_points’ | [user_specified_point()]} pairs
% in order to mute the sensors / measurement points that are known to be
% bogus:
%
{muted_measurements, [

{{nct6792, isa, "0a20"}, ["AUXTIN1"]},
{{acpitz, acpi, "0"}, all_points}

]}
]}.

Other Related Technical Information To access information regarding a
given sensor, psensor may be used: open the preferences of the sensor (click on
its name in the main window), and select the menu item Preferences, and look
at the Chip field. See this link for more information.

The sensors tool is reporting values found in the Linux virtual file system
directory, in /sys/class/thermal/thermal_zone*/{temp,type} for tempera-
tures.

Examples:

• Package id 0 is your (first) CPU

• dell_smm-virtual-0 is your CPU fan, managed by your system firmware

• acpitz-virtual-0 (ACPI Thermal Zone) is the temperature sensor near/on
your CPU socket; this sensor can be unreliable

• coretemp-isa-0000 measures the temperature of the specific cores

See the many comments in class_USSensorManager.erl for more details.
See also the following resources:

• R1: interpreting the output of sensors

• R2: the lm_sensors documentation of Arch Linux

• R3 and R4: lm-sensors tips and tricks

• R5: information about psensor

• R6: an example of preparation/tuning of one’s sensors

Contact Directory
The US Contact Directory server allows US-Main to track information regarding
US contacts, for various purposes, including for the US communication gateway.

8

https://wpitchoune.net/psensor/faq.html
https://github.com/Olivier-Boudeville/us-main/blob/master/src/class_USSensorManager.erl
https://askubuntu.com/questions/843231/what-is-the-meaning-of-the-output-of-the-command-sensors
https://wiki.archlinux.org/title/lm_sensors
https://www.linux.com/topic/desktop/advanced-lm-sensors-tips-and-tricks-linux-0/
https://www.linux.com/training-tutorials/jazz-lm-sensors-graphics-and-notifications-0/
https://wpitchoune.net/psensor/
https://blog.hqcodeshop.fi/archives/276-Improving-Nuvoton-NCT6776-lm_sensors-output.html

Contact File Format

Contact files are ETF files that contain a range of information about persons
and organisations of interest.

Each non-commented line of these files shall be of the following format:

-type contact_line() :: { UserId :: user_id(),
FirstName :: ustring(), LastName :: ustring(), NickName :: ustring(),
Comment :: ustring(), BirthDate :: maybe(ustring()),
LandlineNumber :: maybe(ustring()), MobileNumber :: maybe(ustring()),
PrimaryEmailAddress :: maybe(ustring()),
SecondaryEmailAddress :: maybe(ustring()),
PostalAddress :: maybe(ustring()),
Roles :: [role()] }.

A typical contact line could then be:

{1, "James", "Bond", "007", "MI6 Agent 007", {17,5,1971},
"+44 9 81 47 25 40", "+44 6 26 83 37 22", "james.bond@mi6.uk.org",
undefined, undefined, [administrator, secret_agent]}.

See also our test contact ETF file as a full example thereof.

Contact File Location

The path to a contact file can be either specified as an absolute one, or as a
relative one - in which case it will be deemed relative to the US configuration
directory.

They may be mere symlinks pointing to contact files kept in VCS in other
locations.

Communication Gateway
The purpose of the US Communication Gateway is to enable (possibly two-way)
exchanges with the US users.

Such communication is not to happen frow a web-based medium (see US-Web
for that), but through alternate modes such as SMS (relying then on Ceylan-
Mobile, itself relying on Ceylan-Seaplus) and/or e-mails (relying then on the
corresponding services of Ceylan-Myriad).

For that, the correspondance between a US role (e.g. administrator) and
actual user information is established thanks to the contact directory service.

Network Support Monitoring
This service allows to ensure that the local host (on which US-Main is running)
enjoys a functional network support, in terms of:

• ICMP probes (ping)

• Internet (IP) connectivity

• DNS resolution

9

https://myriad.esperide.org/#etf
https://github.com/Olivier-Boudeville/us-main/blob/master/test/test_contact_directory.etf
http://us-web.esperide.org
http://mobile.esperide.org
http://mobile.esperide.org
http://seaplus.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/email_utils.erl
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/email_utils.erl

This is checked by ensuring periodically that a set of target hosts, specified as
direct IP addresses and/or DNS names, can indeed be interacted with through
the network.

Of course any issue (typically outage of a given network service) is then
reported by appropriate means (i.e. by SMS rather than by email then).

Remote Monitoring of Online Services
The purpose here is to monitor online services (typically websites) provided by
networked peers.

Each service is tracked based on a set of information:

• protocol: http, https, maybe in the future ftp or alike

• base hostname, specified as a DNS name or an IP address

• possibly a resource designator (e.g. a specific URL) for the actual checking

Next Services
The following services are planned (some day) for addition:

• UPS (Uninterruptible Power Supply) monitoring, to be notified whenever
a related event happens (typically a power failure from the electrical grid)

Configuring US-Main

Note
We discuss configuration before installation, as the settings of interest
shall be defined prior to deployment, notably so that adequate permis-
sions can be set on the installation, according to the user under which
US-Main is intended to run.

The US-Main server is part of our "Universal Server" infrastructure, and as
such relies on the base US-Common configuration settings.

So the base information of the user-specified us.config file, found in the
US Configuration directory (possibly located in /etc/xdg/universal-server/
or ~/.config/universal-server/), will apply (see this example thereof).

Notably, in this file, a us_main_config_filename entry can be specified in
order to designate the US-Main configuration file that shall be used; for example:

{us_main_config_filename, "us-main-for-tests.config"}.

This US-Main configuration file concentrates the settings of all the services
presented below, and the ones of US-Main itself; it is additionally used by the
US-Main scripts, notably in order to start, stop, or monitor a designated US-
Main server.

For operational use, we recommend to create a US-Main specific user (to
be set in the us_username entry of one’s us.config file), in order to compart-
mentalise the accesses to resources. For example, provided a us-srv group has
already been created:

10

https://en.wikipedia.org/wiki/Uninterruptible_power_supply
https://us-common.esperide.org/#configuration
https://github.com/Olivier-Boudeville/us-common/blob/master/priv/for-testing/us.config
https://github.com/Olivier-Boudeville/us-main/tree/master/priv/bin

$ useradd --create-home --shell /bin/rssh -g us-srv main-srv

The communication gateway will rely on Ceylan-Mobile to send SMS. For
that, a suitable 3G device (typically a USB key) will have to be used.

As mentioned in this section, proper permissions must apply, so that the
user (e.g. main-srv) running US-Main is able to interact with the 3G device
(e.g. /dev/ttyUSB-my-3G-key).

So gpasswd -a main-srv uucp can be executed as root (and possibly main-srv
may run newgrp uucp).

Installing US-Main: Current Stable Version & Down-
load
As mentioned, the single mandatory prerequisite of the Universal Server is
US-Common, which relies on Ceylan-Traces, which implies in turn Ceylan-
WOOPER, then Ceylan-Myriad and Erlang.

We prefer using GNU/Linux, sticking to the latest stable release of Erlang
(refer to the corresponding Myriad prerequisite section for more precise guide-
lines), and building the Universal Server from sources, thanks to GNU make.

The Universal Server master branch is meant to stick to the latest stable
version: we try to ensure that this main line always stays functional (sorry for
the pun). Evolutions are to take place in feature branches and to be merged
only when ready.

Automated Installation & Deployment
This is actually the simplest, safest, most used/recommended procedure: just
run the deploy-us-main-native-build.sh script (possibly with its --no-launch
option if wanting just to have it ready) and hope for the best!

Using Cutting-Edge GIT
This is more or less a manual, more limited version of the previous deployment
script.

Once Erlang is available, it should be just a matter of executing:

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-WOOPER wooper
$ cd wooper && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Traces traces
$ cd traces && make all && cd ..

Possibly:

11

https://mobile.esperide.org/#managing-dev-ttyusb-entries
https://github.com/Olivier-Boudeville/UniversalServer
http://us-common.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-Myriad
http://erlang.org
http://myriad.esperide.org#prerequisites
https://github.com/Olivier-Boudeville/us-main/blob/master/priv/bin/deploy-us-main-native-build.sh

$ git clone https://github.com/Olivier-Boudeville/erlang-serial
$ cd erlang-serial && make && DESTDIR=. make install && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Oceanic oceanic
$ cd oceanic && make all && cd ..

Also possibly:
$ git clone https://github.com/Olivier-Boudeville/Ceylan-Seaplus seaplus
$ cd seaplus && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Mobile mobile
$ cd mobile && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/us-common
$ cd us-common && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/us-main
$ cd us-main && make all && cd ..

Rebar3-based Build

Note
With rebar3 we encountered a lot of difficulties regarding build and
release. So, at least for the moment, we dropped the use of rebar3
and focused instead on our native build/run system, which is perfectly
suitable and fully sufficient. We do not plan to restore the rebar3 build
anymore (contributions are welcome though - but be aware that the
dependency management is bound to be tricky).

One may prefer relying on rebar3, even if it is by far the less frequent ap-
proach taken here.

If wanting to be able to operate on the source code of the dependencies,
appropriate symbolic links may be defined in a _checkouts directory created
at the root of us-main, these links pointing to relevant Git clones (typically
sibling ones).

Using OTP-Related Build/Runtime Conventions
As discussed in these sections of Myriad, WOOPER, Traces and US-Common,
we added the (optional) possibility of generating a Universal Server OTP appli-
cation out of the build tree, ready to result directly in an (OTP) release. For
that we rely on rebar3, relx and hex.

Then we benefit from a standalone, complete Universal Server.
For more details, one may have a look at:

• rebar.config.template, the general rebar configuration file used when gen-
erating the Universal Server OTP application and release (implying the
automatic management of Myriad and WOOPER)

12

http://myriad.esperide.org/myriad.html#otp
http://wooper.esperide.org/index.html#otp
http://traces.esperide.org/index.html#otp
http://us-common.esperide.org/index.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/
https://github.com/Olivier-Boudeville/us-main/blob/master/conf/rebar.config.template

• rebar-for-hex.config.template, to generate a corresponding Hex package
for Universal Server (whose structure and conventions is quite different
from the previous OTP elements)

Launching US-Main
We recommend running US-Main thanks to a native build (rather than as a re-
lease), and using for that the start-us-main-native-build.sh script, either directly
(for testing) or through systemd (for actual use).

In this last case, first a symbolic link pointing to this script shall be typically
created in the /usr/local/bin directory of the host of interest. Then the server
is to be triggered based on /etc/systemd/system/us-main-as-native-build.service
(see us-main-as-native-build.service).

For example:

$ systemctl start us-main-as-native-build
$ journalctl --pager-end --unit=us-main-as-native-build.service
$ systemctl enable us-main-as-native-build

Then one may run monitor-us-main.sh to browse its traces live at any
time.

Like notified in the start-up message:

-- Starting US-Main natively-built application as user ’stallone’ (EPMD port: 4506)...
Executing application us_main_app.beam as a service (second form)

Write pipe ’/tmp/launch-erl-1103261.w’ found, waiting 2 seconds to ensure start-up is successful indeed.

**
** Node ’us_main’ ready and running as a daemon.
** Use ’to_erl /tmp/launch-erl-1103261’ to connect to that node.
** (then type CTRL-D to exit without killing the node)
**
(authbind success reported)

one may use to_erl to connect directly; just remember that exiting the
interpreter as usual (CTRL-C twice) thus means killing that node; prefer CTRL-
D (once).

For further information one may refer to the US-Main shell scripts, which
cover various administration-related tasks (deploying, starting, monitoring, stop-
ping an US-Main server).

Apparently, in some cases (not always), stopping the US-Main server (typi-
cally with systemctl stop us-main-as-native-build.service) will not un-
register it from its EPMD, which will not be stopped either. As a consequence,
any next launching of the US-Main server is bound to fail after a time-out, and
the VM log file (e.g. /opt/universal-server/us_main-native/us_main/log/erlang.log.1)
will confirm that a node with the same name (us_main) already exists (and thus
prevents the new launch).

In this case, the best solution is to kill that lingering EPMD (e.g. epmd
-port 4507 -kill) or, more brutally, to run the kill-us-main.sh script (it
will kill both any US-Main and its EPMD) - and then to restart US-Main.

13

https://github.com/Olivier-Boudeville/us-main/blob/master/conf/rebar-for-hex.config.template
https://github.com/Olivier-Boudeville/us-main/tree/master/priv/bin/start-us-main-native-build.sh
https://github.com/Olivier-Boudeville/us-main/blob/master/priv/conf/us-main-as-native-build.service
https://github.com/Olivier-Boudeville/us-main/tree/master/priv/bin

Monitoring US-Main
If using the default US-Main EPMD port, checking whether an instance is run-
ning is as simple as:

$ export ERL_EPMD_PORT=4507 ; epmd -names
epmd: up and running on port 4507 with data:
name us_main at port 50002

Then executing kill-us-main.sh will kill any live US-Main instance and
unregister it from its EPMD (without killing any EPMD daemon).

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this document.

Licence
The Universal Server is licensed by its author (Olivier Boudeville) under the
GNU Affero General Public License as published by the Free Software Founda-
tion, either version 3 of this license, or (at your option) any later version.

This allows the use of the Universal Server code in a wide a variety of software
projects, while still maintaining copyleft on this code, ensuring improvements
are shared.

We hope indeed that enhancements will be back-contributed (e.g. thanks to
merge requests), so that everyone will be able to benefit from them.

Credits
Many thanks to David Alberto for his kind sharing in terms of computation of
latitude-based daylight durations (in French).

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word
Have fun with the Universal Server!

14

https://github.com/Olivier-Boudeville/us-main
https://github.com/Olivier-Boudeville/us-main/issues
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.astrolabe-science.fr/duree-du-jour-et-latitude/
https://www.astrolabe-science.fr/duree-du-jour-et-latitude/

	Table of Contents
	Overview
	Layer Stack
	Facilities Provided by this US-Main Layer
	Home Automation
	Presence Simulator
	Alarm System

	Monitoring of Host Sensors
	Preparing the Setup
	Mode of Operation of the Sensor Manager

	Contact Directory
	Contact File Format
	Contact File Location

	Communication Gateway
	Network Support Monitoring
	Remote Monitoring of Online Services
	Next Services

	Configuring US-Main
	Installing US-Main: Current Stable Version & Download
	Automated Installation & Deployment
	Using Cutting-Edge GIT
	Rebar3-based Build
	Using OTP-Related Build/Runtime Conventions

	Launching US-Main
	Monitoring US-Main
	Support
	Licence
	Credits
	Please React!
	Ending Word

